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a b s t r a c t

In this article, we propose a new estimation procedure for a class of semiparametric
mixturemodels that is amixture of unknown location-shifted symmetric distributions. The
proposed method assumes that the nonparametric symmetric distribution falls in a rich
class of continuous normal scale mixture distributions. With this newmodeling approach,
we can suitably avoid the misspecification problem in traditional parametric mixture
models. In addition, unlike some existing semiparametric methods, the proposed method
does not require anymodification or smoothing of the likelihood as it can directly estimate
parametric and nonparametric components simultaneously in themodel. Furthermore, the
proposed parameter estimates are robust against outliers. The estimation algorithms are
introduced and numerical studies are conducted to examine the finite sample performance
of the proposed procedure and to compare it with other existing methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Finite mixture models have a wide application including cluster and latent class analysis, discriminant analysis, image
analysis, and survival analysis. They provide extremely flexible descriptive models for distributions in data analysis and
inference. For general introduction of mixture models, see Lindsay (1995), Böhning (1999), McLachlan and Peel (2000) and
Frühwirth-Schnatter (2006).

A general form of a finite mixture density can be expressed as

p(x; θ) = π1f (x; λ1) + π2f (x; λ2) + · · · + πmf (x; λm),

where θ = (λ1, . . . , λm, π1, . . . , πm),
m

j=1 πj = 1, πj > 0 for j = 1, . . . ,m, and f (x; λj) is the density function for
the jth component. The traditional parametric mixture model assumes that the density f belongs to a certain parametric
family, such as family of normal distributions or t-distributions. The maximum likelihood estimator (MLE) of the unknown
parameter θ can be then obtained using the Expectation–Maximization (EM) algorithm.

In practice, however, a practitionermight not have prior information aboutwhich parametric family one should use for f .
The estimate of θ might be sensitive to the parametric form of f , and in addition, a distributional misspecification of f could
lead to wrong or inefficient statistical inference. For this, one can consider a semiparametric model that leaves f completely
unspecified. Yet, this causes an identifiability problem as the model is too flexible and not parsimonious enough. For this
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identifiability issue in semiparametricmixturemodels, Bordes et al. (2006) andHunter et al. (2007) considered the following
location-shifted semiparametric model with symmetric nonparametric component densities:

p(x; θ, f ) =

m
j=1

πjf (x − µj), (1.1)

where θ = (π1, µ1, . . . , πm, µm) and f is an unknown but symmetric density about zero. Bordes et al. (2006) proved the
identifiability of model (1.1) for m = 2. Hunter et al. (2007) further established the identifiability of model (1.1) for both
m = 2 and m = 3.

Bordes et al. (2007) and Benaglia et al. (2009) proposed a semiparametric EM type algorithm to estimate parameters in
(1.1) using a kernel-based estimator for the symmetric nonparametric density f . They demonstrated, through numerical
study, its superiority over the methods provided by Hunter et al. (2007) and Bordes et al. (2006). However, the bandwidth
selection is not an easy task and sensitive to themodel efficiency. In this case, many commonly usedmethods for bandwidth
selectionmay not be relevant because each component density may have a different impact on the choice of bandwidth and
the ideal bandwidth selection depends on whether components are well-separated or not.

In this article, we propose a new method to estimate the model parameters in (1.1) by modeling f as nonparametric
scale mixtures. The proposed method is free from bandwidth selection and thus is more reliable and robust to model
misspecification. Unlike Bordes et al. (2007) or Benaglia et al. (2009), the new technique relies only on the likelihood
function without any modification or smoothing. In addition, it can give a direct legitimate nonparametric estimator of
f . Furthermore, the proposed parameter estimates are robust against outliers.

The remainder of this paper is organized as follows. In Section 2, we introduce the new estimation method for the
semiparametric mixture model (1.1) and an effective algorithm is introduced to find the proposed estimator in Section 3. In
Section 4, we present both a Monte Carlo study and a real data example to compare the proposed new estimator with some
other existing methods. Finally, some discussions are given in Section 5.

2. Semiparametric mixtures under continuous scale mixture

For the nonparametric symmetric density f in (1.1), we propose to model f as a continuous normal scale mixture. That
is, we assume that f is a member of

F =


f (x)|


1
σ

φ(x/σ)dQ (σ )


, (2.1)

where φ(x) is the standard normal density, and Q is an unspecified probability measure on R+. Although we restrict the
nonparametric symmetric density f toF ,F is rich enough to contain almost all symmetric unimodal continuous probability
densities such as normal, Laplace, t , stable, and so on. Efron and Olshen (1978) and Basu (1996) discussed on how many
distributions are contained in F . Kelker (1971) and Andrews and Mallows (1974) also studied necessary and sufficient
conditions for a probability density to be a member of F . Recently, Seo and Lee (2015) utilized this class of normal scale
mixture densities to efficiently estimate the distribution of innovations aswell as parameters in semiparametric generalized
autoregressive conditional heteroskedasticity models. Böhning and Ruangroj (2002) discussed the difference between the
normal with a free variance parameter and component mixture of normals with the same mean for m = 2. Böhning and
Ruangroj (2002) proved in Theorem 2.3, the difference is an increasing function of the contaminated component variance
when other parameters are fixed. However their results are limited to two-component normal scale mixtures and thus
cannot be applied to the continuous normal scale mixtures. Since the t-distribution is a special case of the continuous
normal scale mixtures, the difference can be very big between normal distribution with a free variance parameter and the
continuous normal scale mixtures.

Under this model class, (1.1) can be expressed as

p(x; θ,Q ) =

m
j=1

πj


1
σ

φ


x − µj

σ


dQ (σ )



=

 m
j=1

πj

σ
φ


x − µj

σ


dQ (σ ). (2.2)

The identifiability of (2.2) can be shown by combining the identifiability of (1.1) and F as described in Proposition 2.1. Chee
and Wang (2013) used a similar argument for the identifiability of their semiparametric location mixtures.

Proposition 2.1. The semiparametric model p(x; θ,Q ) in (2.2) is identifiable when m ≤ 3, i.e., if p(x; θ,Q ) = p(x; θ∗,Q ∗),
then Q = Q ∗ and θ = θ∗ up to a permutation of component labels.
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Proof. Suppose p(x; θ,Q ) = p(x; θ∗,Q ∗), i.e.,

m
j=1

πj


1
σ

φ


x − µj

σ


dQ (σ )


=

m
j=1

π∗

j


1
σ

φ

x − µ∗

j

σ


dQ ∗(σ )


.

Since both
 1

σ
φ(x/σ)dQ (σ ) and

 1
σ
φ(x/σ)dQ ∗(σ ) are symmetric distributions, from the identifiability result of (1.1)

provided in Hunter et al. (2007), we can get π∗

j = πj, µ
∗

j = µj up to a permutation of component labels. In addition,
we have

 1
σ
φ(x/σ)dQ (σ ) =

 1
σ
φ(x/σ)dQ ∗(σ ). Based on the identifiability of the normal scale mixture density (Lindsay,

1983b), we can get Q = Q ∗ except on a set of probability zero. Therefore, p(x; θ,Q ) = p(x; θ∗,Q ∗) implies Q = Q ∗ and
θ = θ∗ up to a permutation of component labels. �

In this article, wemainly focus on estimatingmodel (2.2) assumingm is known, and demonstrate the performance of the
proposed method in the simulation for m = 2 and m = 3. Computationally, our method can be easily extended to the case
ofm > 3, however, it requires more research to establish the identifiability of model (2.2) form > 3.

In the first displayed expression of (2.2), ifQ is known,
 1

σ
φ


x−µj
σ


dQ (σ ) can be considered as a parametric component

density in a finite locationmixturemodel. On the other hand, in the last displayed expression of (2.2), if (πj, µj)’s are known,m
j=1

πj
σ

φ


x−µj
σ


plays a role of a component density in the nonparametric mixture with unknown mixing distribution Q .

Though wemodel the nonparametric density f using (2.1), (2.2) can still be considered as a class of semiparametric mixture
model as (2.1) is a rich class of symmetric distributions with the nonparametric component Q .

When themixing distributionQ is a distributionwith finite support points, we can also interpret (2.2) as a finite location-
scale mixture but with some restriction. To explain this, suppose that Q is a discrete probability measure supported by σ1
and σ2 with corresponding point masses p1 and p2, respectively. p(x; θ,Q ) in (2.2) withm = 2 is then

π1p1
σ1

φ


x − µ1

σ1


+

π1p2
σ2

φ


x − µ1

σ2


+

π2p1
σ1

φ


x − µ2

σ1


+

π2p2
σ2

φ


x − µ2

σ2


. (2.3)

This is just a four-component normal location-scale mixture density but with some restrictions, for example, the location
parameters of the first two components are identical and the scale parameters of the first and third components are the
same.

One potential problem with finite location-scale mixtures is that the likelihood may not be bounded (Kiefer and
Wolfowitz, 1956). In most finite location-scale mixtures, if the scale parameters are common, the likelihood is bounded.
However, since (2.3) allows heterogeneous scale parameters, one can easily show that the likelihood is unbounded: let µ1
be one of data points and σ1 ↓ 0. This in turn implies that the likelihood based on (2.2) is also unbounded because (2.3) is a
submodel of (2.2). There have been considerable research efforts in dealing with the unbounded likelihood issue for finite
normal mixtures. See, for example, Hathaway (1985), Chen et al. (2008), Yao (2010) and Seo and Kim (2012). To avoid this
unbounded likelihood issue, we gave a constraint on the support of Q . That is, instead of assuming that Q is a probability
measure on (0, ∞), we restricted the support of Q to [c, ∞), where c is a predetermined positive constant. This simple idea
was first proposed by Hathaway (1985) in order to avoid singular problems in finite location-scale mixtures. Later, Tanaka
and Takemura (2006) proposed to use [cn, ∞), where cn ↓ 0, and showed the strong consistency for general finite mixtures
of location-scale distributions with log(cn) = O(−nd), 0 < d < 1. These simple restrictions also work for our case and
almost no significant effect for the estimation of Q and θ.

AlthoughF is a subclass of the class of all symmetric densities,F is a quite dense class as it contains almost all unimodal
symmetric probability densities. Based onour limited empirical experience (see, also, the numerical examples in Section 4.1),
the new estimation procedure still works well even if the true component density does not belong to F . The proposed new
method has several important advantages over existing methods. First, unlike other existing methods, the proposed model
has an explicit form of the likelihood in which neither artificial modification nor a tuning parameter is required. This can
yield highly efficient estimators. Second, the estimation ofQ directly gives a legitimate density estimator for each component
density as

1
σ

φ


x − µj

σ


dQ , j = 1, . . . ,m.

Third, since F contains many heavy tailed distributions, the estimation of θ would be very robust against outliers. In fact,
if an outlier exists, the NPMLE of Q tends to contain a large support point with a small mass. This can downweight the
effect of an outlier so that the estimation of location parameters is not greatly affected by outliers. Recently, Seo et al.
(submitted for publication) used F to model the error distribution in a regression setting and showed that the estimated
regression coefficients are quite robust to some severe outliers. We will show this outlier-resistant property empirically in
Section 4.



416 S. Xiang et al. / Computational Statistics and Data Analysis 103 (2016) 413–425

3. Estimating algorithms

For a given random sample X1, . . . , Xn, the log-likelihood based on (2.2) is given by

ℓ(θ,Q ) =

n
i=1

log

 m
j=1

πj

σ
φ


xi − µj

σ


dQ (σ )


. (3.1)

The simultaneous estimation for the MLE of θ and Q is quite difficult problem owing to the nonparametric mixing
distribution Q . For this problem, we propose to iteratively update θ and Q in turn until convergence. Since (3.1) can be
considered as a mixture of finite and infinite mixtures, as demonstrated in Section 2, we can iteratively exploit the standard
EM algorithm for θ and some existing algorithms for Q . In the following subsections, we explain the procedure to find the
NPMLE of Q with fixed θ and the MLE of θ with fixed Q .

3.1. NPMLE of Q

In this subsection, we provide the estimation method for the NPMLE of Q with fixed θ. Even with fixed θ, the estimation
of Q is not a simple task as it is an optimization problem over an infinite dimensional space. Lindsay (1983a) showed the
existence and uniqueness of the NPMLE of Q and also showed that the NPMLE of Q must be discrete with finite support
points nomore than the number of observations. This enables us to search for the NPMLE of Q on distributions having finite
support points. To estimate themixing distributionQ , onemay fix support points ofQ on a predetermined grid and estimate
theweights for each grid point by exploiting the EMalgorithm (Laird, 1978). However, thismethod requires huge computing
time particularly for semiparametric mixture models and the choice of grid is another critical issue.

In this case, some gradient based algorithms would be efficient alternatives. To explain gradient-based algorithms, let us
rewrite (3.1) as

ℓn(Q ) =


i

log


g(xi; θ, σ )dQ (σ )


,

where

g(x; θ, σ ) =

m
j=1

πj

σ
φ


x − µj

σ


.

The gradient functionDQ (ξ) is defined as the directional derivative of ℓn(Q ) atQ toward δξ , where δξ is a Dirac δ distribution
having all its mass at ξ :

DQ (ξ) =
d
dα

ℓn((1 − α)Q + αδξ )|α=0

=

n
i=1

g(xi; θ, ξ)
g(xi; θ, σ )dQ (σ )

− n. (3.2)

For a given estimator Q̂n, DQ̂n
(ξ) is an important tool to judge if the current estimator Q̂n attains the NPMLE. That is, if

DQ̂n
(ξ) is greater than zero at ξ = ξ ∗, this means that there exists Q̂ ∗

n = (1 − α)Q̂n + αδξ∗ satisfying ℓn(Q̂n) < ℓn(Q̂ ∗
n ) for

some 0 < α < 1. Hence, DQ̂n
(ξ) ≤ 0 for all ξ is a necessary condition for Q̂n to be the NPMLE. Indeed, it is also a sufficient

condition (Lindsay, 1995). We call it a gradient condition.
Vertex-Direction-Method (VDM) utilizes this property to find the NPMLE of Q . VDM first searches the maximizer ξ ∗ of

DQ̂n
(ξ)with the current estimator Q̂n. IfDQ̂n

(ξ ∗) ≤ 0, the algorithm stops and returns Q̂n as the NPMLE of Q . Otherwise VDM
updates Q̂n to (1 − α)Q̂n + αδξ∗ for some 0 < α < 1. This type of algorithms was first proposed in the literature of optimal
design theory (Wynn, 1970, 1972; Atwood, 1976; Wu, 1978). Böhning (1982) and Lindsay (1983a) showed their connection
to the NPMLE problem in continuous mixtures.

Although VDM simplifies the estimation procedure and guarantees the convergence to the NPMLE ofQ , it is generally too
slow and requires toomany iterations until the gradient condition is satisfied. This slow convergence ismainly caused by too
many support points because the number of support points in VDM always increases in each iteration. Several algorithms
have been suggested to speed up the convergence such as Vertex-Exchange-Method (VEM) (Böhning, 1986), Intra-Simplex-
Direction-Method (ISDM) (Lesperance andKalbfleisch, 1992), and Constrained-Newtonmethod forMultiple supports (CNM)
(Wang, 2007). Among these, we the recommend CNM algorithm because it is much faster than other existing algorithms.

We here briefly describe the CNM method to find the NPMLE of Q for fixed θ. Suppose that Q̂ (t)
n is the estimator of Q at

(t)th iteration. CNM first adds all local maximizers of DQ̂ (t)
n

(ξ) to the current set of support points of Q̂ (t)
n . Let this new set of
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support points be ξ(t+ 1
2 )

= (ξ1, . . . , ξK )T . The correspondingweight vector p(t+ 1
2 ) is then set to be theminimizer of ∥Sp−2∥

subject to p ≥ 0 and pT1 = 1, where 1 = (1, . . . , 1)T , 2 = (2, . . . , 2)T , and S is a n × K matrix having (i, k)th element

g(xi; θ, ξk)

K
l=1

plg(xi; θ, ξl)

.

Then, all zero elements in p(t+ 1
2 ) and the corresponding support points in ξ(t+ 1

2 ) will be removed, and the remaining support
points and weights are set to p(t+1) and ξ(t+1) which determine Q̂ (t+1)

n . These procedure will be repeated until the gradient
condition is fulfilled. For more details, see Wang (2007).

3.2. MLE of θ

When Q is fixed in (2.2), estimating θ is just a simple application of the EM algorithm for the usual finite mixture models
because it is equivalent to estimating parameters in them-component mixture with component densities

 1
σ
φ


x−µj
σ


dQ ,

j = 1, . . . ,m. In this case, E-step is reduced to computing the posterior probability that xi belongs to the jth component with
a given current parameter estimate θ(t). That is, for fixed Q and the current parameter estimate θ(t), the E-step is equivalent
to computing

z(t)
ij =

π
(t)
j


φ((xi − µ

(t)
j )/σ )/σdQ (σ )

m
k=1

π
(t)
k


φ((xi − µ

(t)
k )/σ )/σdQ (σ )

. (3.3)

Because the current estimator of Q must be discrete, without loss of generality, we can assume that the fixed Q has support
points ξ = (ξ1, . . . , ξK )T with corresponding weights p = (p1, . . . , pK )T . Then, z(t)

ij can also be expressed as

z(t)
ij =

π
(t)
j

K
k=1

pkφ((xi − µ
(t)
j )/ξk)/ξk

m
l=1

π
(t)
l

K
k=1

pkφ((xi − µ
(t)
l )/ξk)/ξk

.

In M-step, θ(t+1) is obtained by maximizing

Q (θ|θ(t)) =

n
i=1

m
j=1

z(t)
ij log


πj

K
k=1

pkφ((xi − µj)/ξk)/ξk



=

n
i=1

m
j=1

z(t)
ij logπj +

n
i=1

m
j=1

z(t)
ij log


K

k=1

pkφ((xi − µj)/ξk)/ξk



with respect to πj and µj, j = 1, . . . ,m. From Q (θ|θ(t)), π (t+1)
j can be explicitly computed as

π
(t+1)
j =

n
i=1

z(t)
ij

n
. (3.4)

However, there is no explicit form for the maximizer of
n

i=1

z(t)
ij log


K

k=1

pkφ((xi − µj)/ξk)/ξk


, (3.5)

with respect to µj. In such a case, standard optimization methods such as the Newton–Raphson algorithm can be used to
find µ

(t+1)
j . However, this optimization strategy may not be stable due to the nature of the mixture likelihood.

As an alternative, we can use an EM-like algorithm for this optimization problem. Themaximization of (3.5) with respect
to µj is similar to computing the MLE in finite normal scale mixture models, where the common unknownmean parameter
is µj with fixed (p1, . . . , pK ) and (ξ1, . . . , ξK ). This interpretation facilitates the use of the EM algorithm again. In this case,
the E-step is to compute

uijk =
pkφ((xi − µj)/ξk)/ξk
K

l=1
plφ((xi − µj)/ξl)/ξl

. (3.6)
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In the M-step, µj is updated by

n
i=1

z(t)
ij xi

K
k=1

uijk
ξ2k

n
i=1

z(t)
ij

K
k=1

uijk
ξ2k

. (3.7)

Now, µ(t+1)
j is obtained by iterating (3.6) and (3.7) until it converges. For these inner E- and M-steps, five iterations are

usually sufficient based on our experience.
Now, we summarize the full iterative algorithm to find the MLE of θ and Q in Algorithm 3.1.

Algorithm 3.1. 1. For fixed θ(t), find all local maximizers of DQ (t)(ξ) and add these to the set of support points of Q (t).
2. Using constrained Newton method, update weights corresponding to the new support points obtained in step 1.
3. Discard all support points corresponding to zero weights, and set the remaining support points and weights to Q (t+1).
4. For fixed Q (t+1), compute π

(t+1)
j and µ

(t+1)
j using the EM algorithm, j = 1, . . . ,m.

In Step 4, like the inner E- and M-steps in (3.6) and (3.7), a small number of iterations for the outer E- and M-steps can
be used for computational ease.

The likelihood based on the proposed method generally has multiple local maxima and we need to start the algorithm
from several initial values. Oneway to obtain the initial values for θ andQ is to use theMLE of θ andσ from

m
j=1

πj
σ

φ


x−µj
σ


,

say θ̂ and σ̂ , and set θ(0)
= θ̂ and Q (0)

= δσ̂ as the initial estimates for θ and Q . We can also use some random partitions of
data tom clusters to obtain the initial values for θ and Q . In practice, it is prudent to run the algorithm frommultiple initial
values and choose the solution which maximizes the log-likelihood (3.1).

4. Numerical examples

4.1. Simulation studies

In this section, we use Monte Carlo simulation studies to illustrate the finite sample performance of the proposed
semiparametric mixtures under continuous scale mixtures (SMCSM), and compare it with the MLE based on normality
assumption for the component density (MLE) and semiparametric EM algorithm (SPEM) proposed by Benaglia et al. (2009).

For SMCSM andMLE, we use 10 random values and the true value as initial values, and select the converged value which
has the largest likelihood. For SPEM, we use MLE as the initial value (note that for SPEM, there is no objective function and
thus it is difficult to choose the right root if multiple initial values are used).

The first simulations are based on two-component mixture models. We assume m = 2 to be known. A random sample
{x1, . . . , xn} is generated from a population with density function

h(x) = π1f (x − µ1) + (1 − π1)f (x − µ2), (4.1)

where (π1, µ1, µ2) are unknown parameters and f is an unknown density that is symmetric about zero. We consider the
following five cases:

CaseI: f (x) ∼ N(0, 1), µ1 = 0, µ2 = 3, π1 = 0.3.
CaseII: f (x) ∼ U(−1, 1), µ1 = 0, µ2 = 1, π1 = 0.3.
CaseIII: f (x) ∼ t3, µ1 = 0, µ2 = 3, π1 = 0.3.
CaseIV: f (x) ∼ t5, µ1 = 0, µ2 = 3, π1 = 0.3.
CaseV: f (x) ∼ Laplace(0, 1), µ1 = −1, µ2 = 1, π1 = 0.3.

Weuse Case I to test the efficiency of our newestimatorwhen the component density is correctly specified byMLE. Case II
is included to see the performance ofmethodswhen the true component density does not belong toF in (2.1), since uniform
distribution is not a member of F . Cases III and IV demonstrate situations with heavy-tailed component densities. Case III is
also the model used by Bordes et al. (2006) and Benaglia et al. (2009) to show the performance of their semiparametric EM
algorithm. Case V is used to demonstrate that the new method can be adaptive to non-normal component densities. Note
that Cases III, IV and V are scale-mixtures of normals.

For simulation studies, a total of 200 random samples with sample sizes n = 100, 300, and 500 were generated from
each case. To assess the performance, we compute both the mean and the mean squared error (MSE) of each estimate:

mean(θ̂) =
¯̂
θ =:

1
N

N
t=1

θ̂t ,

MSE(θ̂) =:
1
N

N
t=1

(θ̂t − θ)2,
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Table 1
Average (MSE) of point estimates over 200 repetitions with n = 100.

Case TRUE SMCSM MLE SPEM

I
π1 = 0.3 0.303(0.004) 0.3038(0.004) 0.286(0.006)
µ1 = 0 0.033(0.108) 0.024(0.068) 0.161(0.354)
µ2 = 3 3.001(0.031) 3.0161(0.023) 2.875(0.087)

II
π1 = 0.3 0.451(0.049) 0.398(0.031) 0.356(0.021)
µ1 = 0 0.125(0.071) 0.037(0.037) 0.414(0.289)
µ2 = 1 1.179(0.088) 1.130(0.047) 0.831(0.074)

III
π1 = 0.3 0.313(0.007) 0.380(0.142) 0.312(0.147)
µ1 = 0 0.030(0.306) −1.159(12.241) 0.091(12.864)
µ2 = 3 3.014(0.047) 4.944(26.658) 4.253(26.687)

IV
π1 = 0.3 0.314(0.006) 0.297(0.034) 0.263(0.040)
µ1 = 0 0.077(0.221) −0.493(3.274) 0.107(3.852)
µ2 = 3 3.004(0.043) 3.249(3.178) 2.819(3.272)

V
π1 = 0.3 0.303(0.008) 0.336(0.084) 0.264(0.083)
µ1 = −1 −0.993(0.180) −1.392(2.221) −0.725(2.334)
µ2 = 1 0.999(0.025) 1.405(2.042) 0.916(2.047)

Table 2
Average (MSE) of point estimates over 200 repetitions with n = 300.

Case TRUE SMCSM MLE SPEM

I
π1 = 0.3 0.296(0.001) 0.297(0.001) 0.284(0.002)
µ1 = 0 0.001(0.030) −0.011(0.024) −0.006(0.026)
µ2 = 3 2.986(0.009) 3.000(0.008) 2.943(0.014)

II
π1 = 0.3 0.431(0.029) 0.419(0.023) 0.320(0.007)
µ1 = 0 0.106(0.028) 0.080(0.018) 0.204(0.098)
µ2 = 1 1.156(0.046) 1.145(0.032) 0.910(0.020)

III
π1 = 0.3 0.305(0.002) 0.322(0.162) 0.330(0.163)
µ1 = 0 0.050(0.053) −3.729(51.876) −3.451(59.433)
µ2 = 3 3.016(0.015) 5.658(46.821) 5.693(50.771)

IV
π1 = 0.3 0.303(0.002) 0.291(0.019) 0.259(0.020)
µ1 = 0 0.014(0.045) −0.433(3.609) −0.202(3.541)
µ2 = 3 3.018(0.011) 3.138(1.626) 2.956(1.615)

V
π1 = 0.3 0.306(0.002) 0.293(0.048) 0.256(0.052)
µ1 = −1 −1.011(0.012) −1.330(1.150) −0.966(1.042)
µ2 = 1 1.005(0.005) 1.154(1.113) 1.014(1.252)

where all calculations are elementwise, N = 200 is the number of repetitions, and θ̂t is the estimate based on the tth
replicate. θ̂ is either MLE, SPEM, or SMCSM of θ = (π1, µ1, µ2).

Note, however, for mixturemodels, there are well known label switching issues (Celeux et al., 2000; Stephens, 2000; Yao
and Lindsay, 2009; Yao, 2015) when doing comparison using the simulation study. There are no widely accepted labeling
methods. In our simulation study, we choose the labels by minimizing the distance to the true parameter values.

Tables 1–3 present the mean and MSE of each parameter estimate for n = 100, 300, and 500, respectively, based on
200 replications. These three tables clearly show that the new method SMCSM has the best performance among all tested
methods in Case III to Case V, but slightly worse in Cases I and II. This is natural because MLE should be the best, especially
for large nwhen the true component density is normal (Case I). But, even in this case, SMCSM is just slightly inferior to MLE.
For Cases III to V, SMCSM outperforms the other two methods, and superiority is quite significant. Based on the results of
Cases III and IV, unlike MLE, SMCSM is very robust to heavy tailed component density.

For better presentation, we also provide Figs. 1–3, which plot the estimates of eachmethod for Case I, Case III and Case V.
It can be easily seen that for Case I, SMCSM and MLE work comparatively, with SPEM having bigger bias for all parameters.
The superiority of SMCSM is clear in Cases III and V, where the estimates by MLE and SPEM have much bigger variation.

In the second part of the simulation study, we investigate the performance of different estimates for three-component
mixture models. The model settings are similar to the above study design where we continue using normal, uniform, t3, t5,
and Laplace distributions. Below are the list of cases we consider:

CaseI: f (x) ∼ N(0, 1), µ1 = 0, µ2 = 3, µ3 = 5, π1 = 0.3, π2 = 0.5.
CaseII: f (x) ∼ U(−1, 1), µ1 = 0, µ2 = 1, µ3 = 3, π1 = 0.3, π2 = 0.5.
CaseIII: f (x) ∼ t3, µ1 = 0, µ2 = 3, µ3 = 5, π1 = 0.3, π2 = 0.5.
CaseIV: f (x) ∼ t5, µ1 = 0, µ2 = 3, µ3 = 5, π1 = 0.3, π2 = 0.5.
CaseV: f (x) ∼ Laplace(0, 1), µ1 = −1, µ2 = 1, µ3 = 3, π1 = 0.3, π2 = 0.5.
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Table 3
Average (MSE) of point estimates over 200 repetitions with n = 500.

Case TRUE SMCSM MLE SPEM

I
π1 = 0.3 0.319(0.001) 0.320(0.001) 0.311(0.000)
µ1 = 0 −0.003(0.014) −0.008(0.012) 0.003(0.013)
µ2 = 3 2.992(0.006) 2.999(0.005) 2.955(0.008)

II
π1 = 0.3 0.424(0.023) 0.418(0.019) 0.294(0.003)
µ1 = 0 0.131(0.026) 0.092(0.016) 0.107(0.024)
µ2 = 1 1.127(0.030) 1.141(0.028) 0.948(0.006)

III
π1 = 0.3 0.303(0.001) 0.321(0.187) 0.352(0.194)
µ1 = 0 0.017(0.026) −5.205(101.051) −5.003(116.853)
µ2 = 3 3.006(0.007) 6.612(78.698) 7.022(89.414)

IV
π1 = 0.3 0.303(0.001) 0.316(0.032) 0.302(0.033)
µ1 = 0 0.019(0.023) −0.312(3.785) −0.214(4.431)
µ2 = 3 3.005(0.007) 3.477(5.426) 3.413(6.038)

V
π1 = 0.3 0.300(0.001) 0.263(0.050) 0.239(0.050)
µ1 = −1 −1.001(0.008) −1.552(2.017) −1.193(1.806)
µ2 = 1 0.997(0.002) 1.204(2.091) 1.096(2.213)

Fig. 1. Box-plot of estimates when n = 100.

Similarly, a total of N = 200 datasets with sample sizes n = 100, n = 300 and n = 500 were generated from each
case. SMCSM, MLE and SPEM are applied to estimate θ = (π1, π2, µ1, µ2, µ3) in each case, and the mean and MSE of each
parameter estimates are summarized in Tables 4–6. SMCSM still show its superiority over MLE and SPEM for all parameter
estimates and sample sizes for Case III to Case V. The improvement is especially extraordinary for mean estimates for heavy
tailed distributions. For Case I and Case II, unlike the above two-component case, SMCSM performs slightly better than MLE
and SPEM for all parameter estimates but a few location parameters.

4.2. Real data example

We apply our methodology to the elbow diameter data, described in Heinz et al. (2003). The dataset contains the elbow
diameters of 507 physically active people, and due to the gender difference, it is highly likely that there are two clusters of
observations. Of these subjects, 247 men (or 48.72%) have a sample mean of 14.46 and a sample standard deviation of 0.88.
The corresponding values for the remaining female subjects are 12.37 and 0.84. Fig. 4 shows the histogram of the data.

To evaluate the number of components of this dataset, we used the likelihood based k-fold cross validation. To be more
specific, let D be the full dataset and Dl be the lth partition such that ∪

k
l=1 Dl = D , where k is the total number of partitions.

For each partition, we use the training set D − Dl to obtain the estimates θ̂
(l)

and Q̂ (l) and use Dl for testing. Then, the
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Fig. 2. Box-plot of estimates when n = 300.

Fig. 3. Box-plot of estimates when n = 500.

likelihood version of CV is defined by

CV (m) =

k
l=1


t∈Dl

log

 m
j=1

π̂
(l)
j

σ
φ


xt − µ̂

(l)
j

σ


dQ̂ (l)(σ )


. (4.2)

We use the 10-fold cross validation and the CV (m) values for m = 1, m = 2 and m = 3 are −90.22, −84.02 and −85.41,
respectively, and therefore,m = 2 is selected as the number of components.

Table 7 reports the parameter estimates based on different methods, without using the gender information. For bench
mark comparison, we also report the oracle value that uses the gender information. For SMCSM andMLE, we use 10 random
initial values and select the converged value which has the largest likelihood. For SPEM, we use the MLE as the initial value.
We can see that all threemethods provide similar parameter estimates for the rawdata. In addition,without using the gender
information, all threemethods based onmixturemodels can recover themean elbow diameters for male and female, that is,
provide similar estimates to the oracle one. Fig. 5 shows the estimated CDFs of p(x) for different methods and the empirical
CDF of p(x). It can be seen that the CDFs of SPEM and SMCSM are closer to the empirical CDF than that of MLE.

Next, we check the robustness of different methods by adding outliers to the original dataset. We consider two outlier
cases: Case I. five 21’s (the range of original data is from 9.9 to 16.7); Case II. ten randomly generated points from U(16, 20).
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Table 4
Average (MSE) of point estimates over 200 repetitions with n = 100 for m = 3.

Case TRUE SMCSM MLE SPEM

I

π1 = 0.3 0.247(0.006) 0.248(0.004) 0.227(0.013)
π2 = 0.5 0.446(0.018) 0.500(0.024) 0.588(0.036)
µ1 = 0 0.103(0.243) −0.027(0.093) 0.678(1.173)
µ2 = 3 3.028(0.376) 3.193(0.723) 3.104(0.180)
µ3 = 5 4.216(1.384) 4.845(0.833) 3.636(2.429)

II

π1 = 0.3 0.372(0.015) 0.468(0.047) 0.367(0.042)
π2 = 0.5 0.463(0.014) 0.437(0.020) 0.527(0.037)
µ1 = 0 0.352(0.199) 0.240(0.233) 0.524(0.324)
µ2 = 1 0.819(0.147) 1.150(0.221) 0.848(0.132)
µ3 = 3 2.678(0.559) 3.184(0.101) 2.992(0.084)

III

π1 = 0.3 0.276(0.004) 0.212(0.027) 0.166(0.039)
π2 = 0.5 0.430(0.017) 0.630(0.051) 0.711(0.089)
µ1 = 0 0.030(0.312) −2.258(26.225) −1.074(26.537)
µ2 = 3 2.838(0.262) 2.925(1.123) 2.806(0.503)
µ3 = 5 4.588(0.806) 7.763(26.941) 6.082(26.524)

IV

π1 = 0.3 0.300(0.003) 0.281(0.012) 0.263(0.016)
π2 = 0.5 0.432(0.014) 0.481(0.025) 0.590(0.038)
µ1 = 0 −0.005(0.219) −0.486(2.642) 0.613(2.683)
µ2 = 3 2.979(0.309) 3.141(1.694) 3.047(0.431)
µ3 = 5 4.677(0.725) 5.641(5.544) 4.504(6.398)

V

π1 = 0.3 0.322(0.003) 0.295(0.017) 0.249(0.029)
π2 = 0.5 0.472(0.009) 0.563(0.020) 0.667(0.061)
µ1 = −1 −0.990(0.051) −1.485(1.300) −0.424(1.262)
µ2 = 1 0.919(0.089) 0.936(0.217) 0.795(0.141)
µ3 = 3 2.448(1.038) 3.396(1.339) 2.285(2.762)

Table 5
Average (MSE) of point estimates over 200 repetitions with n = 300 for m = 3.

Case TRUE SMCSM MLE SPEM

I

π1 = 0.3 0.298(0.001) 0.301(0.000) 0.320(0.002)
π2 = 0.5 0.447(0.017) 0.490(0.016) 0.525(0.010)
µ1 = 0 −0.003(0.041) −0.027(0.022) 0.289(0.167)
µ2 = 3 3.065(0.375) 3.188(0.493) 3.244(0.106)
µ3 = 5 4.462(0.851) 4.876(0.556) 4.106(1.242)

II

π1 = 0.3 0.381(0.017) 0.464(0.036) 0.462(0.059)
π2 = 0.5 0.468(0.011) 0.411(0.015) 0.390(0.045)
µ1 = 0 0.397(0.229) 0.218(0.121) 0.456(0.255)
µ2 = 1 0.935(0.097) 1.263(0.145) 0.935(0.065)
µ3 = 3 2.963(0.076) 3.160(0.043) 2.966(0.031)

III

π1 = 0.3 0.277(0.002) 0.175(0.038) 0.142(0.045)
π2 = 0.5 0.440(0.010) 0.702(0.087) 0.745(0.107)
µ1 = 0 0.015(0.072) −3.639(45.878) −2.567(46.077)
µ2 = 3 3.052(0.199) 3.135(0.789) 2.884(0.622)
µ3 = 5 4.790(0.397) 8.960(45.409) 7.411(42.633)

IV

π1 = 0.3 0.315(0.002) 0.307(0.012) 0.304(0.014)
π2 = 0.5 0.453(0.009) 0.544(0.014) 0.562(0.021)
µ1 = 0 0.017(0.075) −0.562(4.604) 0.036(4.874)
µ2 = 3 3.016(0.153) 3.217(0.631) 3.188(0.481)
µ3 = 5 4.862(0.393) 6.241(8.022) 4.982(7.910)

V

π1 = 0.3 0.308(0.002) 0.263(0.022) 0.199(0.029)
π2 = 0.5 0.505(0.005) 0.581(0.024) 0.702(0.063)
µ1 = −1 −0.982(0.049) −1.633(2.574) −0.464(2.218)
µ2 = 1 1.006(0.086) 0.868(0.244) 0.791(0.099)
µ3 = 3 2.788(0.389) 3.445(1.698) 2.484(2.279)

The results are also reported in Table 7. From the table, we can see that SMCSM with added outliers provides almost the
same estimates as SMCSM without outliers. However, both MLE and SPEM are very sensitive to the outliers. MLE tends to
fit both types of contaminated data with one component containing only the outliers and the other component containing
the rest of the data. SPEM performs similarly to MLE for Case I outliers, and provides a one component fit for Case II outliers.

To check whether MLE and SPEM might pick up the outliers as a third component, we fit the contaminated data with
a three-component model and estimate the parameters with MLE or SPEM. The results are reported in Table 8. For outlier
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Table 6
Average (MSE) of point estimates over 200 repetitions with n = 500 form = 3.

Case TRUE SMCSM MLE SPEM

I

π1 = 0.3 0.309(0.001) 0.311(0.000) 0.338(0.002)
π2 = 0.5 0.443(0.014) 0.466(0.012) 0.471(0.006)
µ1 = 0 0.023(0.024) 0.010(0.016) 0.262(0.112)
µ2 = 3 3.180(0.495) 3.186(0.434) 3.267(0.114)
µ3 = 5 4.624(0.644) 4.840(0.386) 4.387(0.594)

II

π1 = 0.3 0.374(0.015) 0.464(0.034) 0.512(0.064)
π2 = 0.5 0.444(0.011) 0.386(0.020) 0.304(0.059)
µ1 = 0 0.359(0.200) 0.346(0.294) 0.397(0.189)
µ2 = 1 0.924(0.103) 1.183(0.213) 0.970(0.037)
µ3 = 3 2.936(0.038) 3.126(0.024) 2.919(0.024)

III

π1 = 0.3 0.277(0.002) 0.175(0.038) 0.142(0.045)
π2 = 0.5 0.440(0.010) 0.702(0.087) 0.745(0.107)
µ1 = 0 0.015(0.072) −3.639(45.878) −2.567(46.077)
µ2 = 3 3.052(0.199) 3.135(0.789) 2.884(0.622)
µ3 = 5 4.790(0.397) 8.960(45.409) 7.411(42.633)

IV

π1 = 0.3 0.291(0.001) 0.257(0.023) 0.265(0.015)
π2 = 0.5 0.475(0.006) 0.561(0.027) 0.636(0.041)
µ1 = 0 0.015(0.032) −1.396(13.151) −0.514(10.758)
µ2 = 3 3.039(0.105) 3.151(1.543) 3.212(0.390)
µ3 = 5 4.884(0.277) 6.397(14.045) 5.485(12.951)

V

π1 = 0.3 0.321(0.001) 0.294(0.028) 0.265(0.035)
π2 = 0.5 0.484(0.002) 0.527(0.014) 0.594(0.041)
µ1 = −1 −0.997(0.010) −1.543(2.761) −0.709(2.624)
µ2 = 1 1.024(0.047) 0.944(0.412) 0.874(0.113)
µ3 = 3 2.912(0.126) 3.403(1.899) 2.603(2.410)

Fig. 4. Histogram of the elbow diameter data.

Case I, MLE and SPEM indeed pick up the outliers as a third component, and can estimate the other two components very
well. However, for outlier Case II, neither of the two methods can recover the original two components.

5. Discussion

The method proposed in this paper utilizes nonparametric normal scale mixture models to specify the nonparametric
symmetric component density. This enables us to estimate parametric and nonparametric components in the model
simultaneouslywithoutmodifying the likelihood. The existingmethods rely on the kernel density estimator, which requires
the selection of bandwidth, and can have much effect on model performance. On the other hand, there is no such selection
issue for the proposed method. Hence, it can give a more efficient and reliable estimator than others. In addition, the
proposed method is robust to any potential outlier as it automatically downweights observations far away from the center
of each component.

The choice of the number of components has long been a difficult problem formixturemodels. As far aswe know, there is
no established model selection procedure for semiparametric mixture models. We proposed to use a likelihood based cross
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Table 7
Parameter estimates for the elbow diameter data based on different estimation methods.

Method π1 µ1 µ2
Oracle value 0.513 12.37 14.46

Original data
SMCSM 0.564 12.47 14.56
MLE 0.561 12.46 14.56
SPEM 0.557 12.52 14.47

Data with five ‘‘21’’
SMCSM 0.522 12.42 14.33
MLE 0.990 13.39 20.99
SPEM 0.990 13.39 21.00

Data with ten outliers from U(16, 20)
SMCSM 0.571 12.53 14.61
MLE 0.984 13.39 18.37
SPEM 0.869 13.48 13.49

Table 8
Parameter estimates for the elbow diameter data with 3-component model.

Method π1 π2 π3 µ1 µ2 µ3

Data with five ‘‘21’’
MLE 0.555 0.435 0.010 12.458 14.569 21.001
SPEM 0.556 0.434 0.010 12.513 14.505 21.001

Data with ten outliers from U(16, 20)
MLE 0.551 0.433 0.016 13.38 13.42 18.37
SPEM 0.549 0.433 0.018 13.39 13.40 18.24

Fig. 5. The CDFs of p(x) for different methods and the empirical CDF of p(x): SMCSM (blue dotted line), MLE (red solid line), SPEM (black dashed line) and
empirical CDF (black dash dotted line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

validationmethod to choose the number of components and demonstrated its empirical success in our real data application
in Section 4.2. But it requiresmore research to find some theoretically justifiedmodel selectionmethods for semiparametric
mixture models. Bordes et al. (2006) and Hunter et al. (2007) have investigated extensively the identifiability of the model
(1.1) and proved its identifiability whenm ≤ 3. However, their identifiability results cannot be extended to the case where
m > 3. It requires more research to establish the identifiability of the model (1.1) form > 3.

As another future work, onemay extend the proposedmethod to semiparametric multivariatemixtures. In this case, one
can apply nonparametric multivariate scale mixtures for the nonparametric component densities. Based on our description
in this paper, it is plausible at least theoretically but may require a huge computing time especially for high dimensional
mixtures. In fact, there is no rigorous study for the estimation algorithm in nonparametric multivariate mixture though
existing methods may still be applicable. This extension should be further investigated in the future. In addition, we can
also extend the proposed method to the two component semiparametric mixture model when one component is known
while the other is symmetric but otherwise arbitrary (Bordes et al., 2006; Xiang et al., 2014; Ma and Yao, 2015). This
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semiparametric model has wide applications in many areas such as large-scale simultaneous testing/multiple testing,
sequential clustering, and robust modeling.
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